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Abstract. A new model is introduced for wave propagation on a disordered Cayley tree. The 
model has sufficient simplifying features (related to the absence of time-reversal symmetry 
and to phase randomisation) that a straightforward study is possible of the probability 
distribution for eigenstate amplitudes. It is shown that the model supports extended eigen- 
states at weak scattering and that eigenstates are exponentially localised at strong scattering. 
Two further distinctions are also shown to be important. The localised phase is insulating if 
the exponential decay with distance of eigenstate amplitudes is faster than the exponential 
growth in number of sites with distance from an origin; otherwise eigenfunctions are not 
square-integrable and the phase is conducting. Correspondingly, in the extended phase there 
are large amplitude fluctuations unless the correlation length is smaller than the exponential 
growth rate of site number with distance. 

1. Introduction 

It is remarkable that, in over 30 years since Anderson’s first discussion of localisation of 
waves by disorder (Anderson 1958), no really elementary mean-field treatment of the 
mobility edge has emerged. In this paper we describe a relatively straightforward 
approach that we hope will provide a useful complement to recent solutions of non- 
linear models (Efetov 1987a) for localisation. 

A natural route to a mean-field theory is to study models defined on a Cayley tree, 
or its infinite-size limit, the Bethe lattice. Previous discussions of localisation in this 
context can be divided into three categories. Disordered tight-binding models defined 
on a Bethe lattice were first examined by Abou-Chacra et a1 (1973) and Abou-Chacra 
and Thouless (1974), who obtained an integral equation for the probability distribution 
of the single-particle self-energy. The full integral equation is presumably intractable, 
being non-linear and in two variables, but from it they demonstrated the stability of 
localised states at strong disorder and estimated the position of the mobility edge. 
Subsequently, Kunz and Souillard (1983) proved the existence of extended states in the 
same model and also derived the critical behaviour of the localisation length near 
the mobility edge. A second approach, initiated by Efetov (1985, 1987a, b; see also 
Zirnbauer 1986), has been the study on a Bethe lattice of non-linear sigma models for 
the localisation transition. Essentially complete results have been obtained for the 
disorder-averaged two-particle Green functions, although the necessary analysis is very 
elaborate. A third starting point, and the one closest to our own, was suggested by 
Shapiro (1983), who considered wave transmission through a Cayley tree made by fitting 
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together a large number of ‘black-box’ scatterers. Each scatterer is characterised by a 
random S-matrix, chosen from a statistical distribution. He concentrated on the reflec- 
tion coefficient of the tree, showed that there was a transition and calculated the critical 
behaviour of the conductance. 

We introduce a new model, which belongs to the same category as Shapiro’s in that 
it represents wave propagation on a Cayley tree. It is, we believe, the simplest possible 
example of its kind. The simplicity has two sources. First, time-reversal invariance is 
maximally broken in the model, in the sense that each of the ‘links’ or scattering channels 
that make up the Cayley tree carries flux only in one direction. (To this extent, the model 
represents electrons moving in an external magnetic field.) Secondly, certain phase 
shifts appearing in the model are assumed to be random and uniformly, independently 
distributed. There is a single parameter, playing the same role as energy in tight-binding 
models, that controls the strength of scattering and hence the nature of eigenstates. 

Our approach to studying the model is also novel. It involves testing the sensitivity 
of energy levels of the system to (spatially) local perturbations. This sensitivity is, in 
turn, related to the amplitude of the corresponding eigenstate in the perturbed region. 
We obtain a non-linear integral recursion relation for the probability distribution of 
eigenstate amplitudes in a sequence of systems of increasing size. At a technical level, 
the simplifying feature of this integral equation is that it involves only one variable, 
rather than two (as appear in other studies of more general models). Because of this, it 
is not difficult to understand enough about the solutions to deduce the nature of eigen- 
states, as a function of the scattering parameter in the model. 

As expected, there is a transition between extended eigenstates at weak scattering 
and exponentially localised eigenstates at strong scattering. In addition, two further 
distinctions arise, which are specific to the Cayley tree and have not previously been 
much emphasised. These occur because the number of sites on a Cayley tree at a given 
distance from an origin grows exponentially with distance. The rate of exponential 
growth can be compared with the correlation length in the extended phase, or localisation 
length in the localised phase. We find that both phases are subdivided. Close to the main 
transition the correlation length or localisation length is larger than the growth rate of 
site number, while far from the transition the respective lengths are smaller than the 
growth rate. The differences have significant physical consequences. Eigenfunctions in 
the localised phase are square-integrable only if the localisation length is sufficiently 
short; otherwise the phase is conducting. Correspondingly, there are strong amplitude 
fluctuations in the extended phase unless the correlation length is smaller than the 
growth rate of site number. Thus the localisation transition is split into three stages 
on a Cayley tree. Earlier work has stressed only one of these: the division between 
normalisable and unnormalisable eigenfunctions. 

The remainder of the paper is organised as follows. The model is defined and our 
approach to calculating properties of eigenstates is outlined in section 2. These ideas are 
illustrated in section 3 by applying them to a one-dimensional system. The Cayley 
tree is treated in section 4. In section 5 we summarise briefly our results and discuss 
qualitatively the functional form of eigenstates. 

2. Themodel 

Our model is defined in a way that is one step removed from a specification of the 
Hamiltonian. The model represents wave propagation on a network with the form of a 
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Figure 1. A network having the form of a Cayley 
tree. Arrows indicate the direction of flux flow on 
links. 

Figure 2. ( a )  A node of the network. The points s, tos, are referred to in equation ( 2 . 2 ) .  ( b )  
Connections at the node in the limit 8 = 0. (c) Connections at the node in the limit 8 = E. 

Cayley tree (figure 1). The network is built from two components: 'links', or scattering 
channels, and nodes, at which links meet and waves are scattered between them. If an 
underlying Schrodinger equation were solved for every component of the network, the 
result would be a phase shift characterising each link and a scattering matrix charac- 
terising each node. In fact, instead of obtaining these quantities from a Hamiltonian, we 
define the model directly in terms of phase shifts and scattering matrices. Further 
simplification comes by restricting each link to carry flux in only one direction, so that 
time-reversal invariance is broken, as it is for electrons moving in an external magnetic 
field. 

A wave propagating on the network is described at each point s by a complex 
amplitude, z(s). The phase of z(s) is the same as that of the wave, but the amplitude is 
scaled according to the group velocity, so that Iz(s)i2 gives the flux past the point s. If s1 
and s2 are the beginning and end of a given link n,  then for any z(sl) 

~ ( s 2 ) =  exP(iYn)z(sl) (2.1) 
where qn (real and independent of z(sl)) is the phase shift associated with the link. Four 
links meet at a node, two carrying incoming fluxes and two carrying outgoing fluxes 
(figure 2(a)) .  Let z(sl), z(sz), z(sg)  and z ( s ~ )  denote the respective amplitudes on each 
link where it meets the node. For any z ( s2 )  and z(s4) 

in which the (fixed) matrix M specifies the scattering at the node. 
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Flux conservation limits M to, essentially, a one-parameter family. The condition 
Iz(sl)i2 - Iz(s3)I2 = iz(s4)I2 - lz(s2)12 for all z(s2)  and z(s4) implies 

with a, /3, y ,  6 and 0 real. The phases a, p, y and 6 can be set to zero by an appropriate 
choice of gauge, leaving 8 2 0 to parametrise the scattering. We use the notation 

M(8) = (cosh 8 sinh 8 )  

sinh 8 cosh 8 

The limit 8 = 0 (figure 2(b)) corresponds to a situation in which all flux incident at the 
node via s1 leaves via s4 (and similarly flux incident via s2 leaves via s3). In the opposite 
limit, 8 = (figure 2(c)), connections are exchanged so that flux incident via s1 leaves 
via s3, etc. More generally, as 8 varies between these limits, the scattering amplitudes 
interpolate between these extremes. 

Different models can be obtained by connecting these two components-links and 
nodes-in various ways. One example of a two-dimensional network has been studied 
numerically as a model for localisation in the context of the integer quantum Hall effect 
(Chalker and Coddington 1988), and in fact this setting provided the original motivation 
for examining systems in which links carry current only in one direction. In the present 
work we choose networks with a simple enough topology that analytic progress is 
possible: principally the Cayley tree illustrated in figure 1. This example has coordination 
q = 3, in the sense that the links form loops that (except for those at the surface) are 
each connected by nodes to three neighbouring loops. It is no more difficult to treat 
other values of q.  Cayley trees with higher coordination show essentially the same 
behaviour as for q = 3, but with extended states over an increasing range as q increases. 
The case q = 2 corresponds to a one-dimensional system. We use it to give a simple 
demonstration of our methods. In common with other one-dimensional models, it has 
only localised states. 

Having fixed the topology of the network, it remains to specify scattering parameters 
and phase shifts. We choose the same value for the scattering parameter 8 at every node 
of the network. Changing this value takes the model through its mobility edge. States 
are extended in the limit 0 = 0, when the same flux flows on every link of the system 
(figure 3(a)), while they are localised for 8 = m, because then the network decomposes 
into a large number of uncoupled loops (figure 3(b)). 

The link phases cannot be chosen completely arbitrarily, since for a closed network 
there will not in general be non-zero amplitudes that satisfy equations (2.1) and (2.2) 
everywhere. This corresponds, of course, to the fact that an arbitrarily chosen energy 
will not in general be an eigenenergy of a finite system. In order to find energy levels and 
eigenfunctions, one needs to know something about the variation with energy of the link 
phases {q,,} and the scattering parameter 8. We suppose that the link phases vary much 
more rapidly with energy than the scattering parameter, which is reasonable if the links 
are many wavelengths long. Then, in a narrow energy range, we can consider 8 fixed 
and assume pl, to vary linearly with energy E ,  i.e. 

q n  = a n  + BnE. (2.5) 
Disorder is introduced into the model solely through the choice of a,. We take CY,, for 
each link n to be an independent random variable, uniformly distributed in [0,2n) .  It is 
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Figure 3. (a )  T h e  network of figure 1 in the limit 8 = 0. ( b )  The network of figure 1 in the 
limit 8 = =. 

natural, and not difficult, to take Pn also to be a random variable, but for simplicity we 
choose Pn a constant independent of n ,  without any important changes in our results. 

Solving this model means finding both the allowed energy levels and the associated 
eigenstates, or flux amplitudes, z(s),  which satisfy the matching conditions, equations 
(2.1) and (2.2),  throughout the network. We are interested in statistical properties of 
these solutions as a function of the scattering parameter 8. 

Briefly, our approach is to construct a set of amplitudes {z(s)} that satisfy the matching 
conditions everywhere except possibly at one arbitrarily chosen point, say on the link 
N .  At this point there is, in general, a phase discontinuity of Y ( E )  + aN, where " ( E )  
contains implicit information on the rest of the network and aN is the random phase 
associated with this link. Allowed energy levels El are solutions to 

Y(E/) + LYN = 2nl (2.6) 
with 1 an integer. Thus the function Y(E) determines an irregular ladder of energy levels. 
We find the nature of the associated eigenstates using a method similar to that introduced 
by Thouless (1974): we test the sensitivity of these energy levels to a local perturbation 
of the system, represented by a change in the value of cyN. Essentially, this sensitivity, 
or susceptibility, measures the amplitude of eigenstates in the perturbed region: in fact 
(see the discussion following equation (3.9)) 

where lzNI2 is the flux carried by the link N .  In turn, from equation (2 .6) ,  the sensitivity 
is related to the gradient of Y ( E )  by 

- (dE//d a N ) - *  = [ a Y ( E ) / a E ]  I E = E / .  (2  * 8)  

One expects the probability distribution for energy level sensitivities to have different 
characteristic features in regions of localised and extended states, because of the relation- 
ship between sensitivities and eigenstate amplitudes. If states are extended, every state 
should have comparable amplitude at the point where the system is perturbed, and 
hence each energy level will move by a similar amount under the perturbation. The 
probability distribution for energy level sensitivities will then be relatively narrow. 



2676 J T Chalker and S Siak 

li-: 
3 

/ /’ 
I / ’ 

/ 

/ 

,, / / { ’  
1 L 

Figure 5. The phase function Y ( E )  versus energy 
E if states are localised. 
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Figure 4. The phase function Y ( E )  versus energy 
E if states are extended. 

Conversely, if states are localised, then, at a given point in the system, a few states will 
have large amplitudes while almost all others have vanishingly small amplitudes. The 
probability distribution in that case will be enormously broad. 

There are concomitant differences in the function Y(E), which can be illustrated if 
one imagines solving equation (2.6) graphically. Suppose that the function Y(E) is 
plotted against energy E: it is a monotonically increasing function with varying gradient. 
Energy levels Elare the energies at which Y(E) intersects the horizontal lines: 2 d -  aN. 
The mean gradient of W(E), averaged over an energy interval large enough to contain 
many levels, simply determines the density of states: it is proportional to system size and 
contains no information on localisation. By contrast, fluctuations in the gradient of Y ( E )  
are intimately related to the nature of eigenstates. Suppose that Y(E) is a smooth 
function with gradient always close to its mean value (figure 4). Then a perturbation 6a 
in the phase aN will move all energy levels by a similar amount (of order (8a/ 
2 n )  x (mean level spacing)) and we can conclude that states are extended. Suppose, 
alternatively, that Y(E) increases in asequence of steep steps, with only a small gradient 
between each rise (figure 5 ) .  Then most energy levels (those for which the line 2 n l -  aN 
intersects a steep part of Y(E)) will be very insensitive to a perturbation 6a. In that case 
we conclude that states are localised. Given that states are localised, the argument can 
be reversed: since most energy levels are then exponentially insensitive (as a function 
of system size) to the perturbation, the steepness of steps in Y(E) should increase 
exponentially with system size. 

In summary, by studying the probability distribution of the phase gradient dY(E)/ 
dE,  we obtain information on the probability distribution of fluxes, Izl2, in eigenstates. 

3. Localisation in one dimension 

In this section we use a one-dimensional network to illustrate the approach outlined 
above. An attempt is made to construct an eigenstate at energy E on the network of 
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Figure 6 .  Illustration of the one-dimensional model studied in section 3. The points marked 
are referred to in equations (3 .1~)  and (3.lb). 

figure 6 by matching flux amplitudes z(s)  across successive links and nodes, working 
right to left along the length of the network. Whether the result is an eigenstate depends 
on the phase match (or mismatch) Y ( E )  across the final (left-most) link of the network. 
In turn, the nature of eigenstates is indicated by the phase gradient in energy, dY/aE, 
which is determined from a stochastic recursion relation (equation (3.8)). An analysis 
of this recursion relation is the crucial step. It is shown that the phase gradient has 
a limiting probability distribution in large systems, which, finally, is related to the 
distribution of eigenstate amplitudes. 

Consider the network of figure 6. Using definitions given in section 2 (equations 
(2.1), (2.2) and (2.4)), amplitudes at successive points are related by 

(3. la)  

and 

z(a,) = exp(-ivI,)z(b,) 4 C n )  = exp(i9,)4d,). (3. lb)  
We take cp , + cp I, = a,, + E ,  where the a, are independent random variables uniformly 
distributed in [0,2n) and E denotes energy. To find energy levels we need to keep track 
of the phase difference 

vll = ars[z(c?l)l - arg[z(afl>l. (3.2) 
The phase difference v,, can be expressed in terms of I),- and an in two steps. First, from 
equation (3.la), we have (using /z(a,)l = ~z(c,)~, a consequence of flux conservation) 

arg[z(d,)] - arg[z(b,)] = 2 tan-1[e-2e tan(qj,,-l/2)] = g(8, q ~ ~ - ~ )  (3.3) 
where the function g(8,qj) is introduced for notational convenience. Secondly, from 
equation (3.lb), 

v n  = a, + E + V n - 1 ) .  (3 * 4) 
In addition, from equation (3.la), fluxes are related by 

~z(a,,-l)/z(a,)~2 = lexp(iq,-.l) cosh 8 + sinh 
which can also be expressed in terms of g(8,  q j )  as 

lz(an-*)/~(%)12 = ado ,  v n - l ) / ~ v n - l .  (3.5) 
The eigenenergies E, are determined by the phase-matching condition that, in an N -  
loop chain (see, for example, Ziman 1979), 

vN(EI )  = 2.~~1. (3.6) 
(In comparing equations (3.6) and (2.6), note that Y ( E )  = v N ( E , )  - aN.) 
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The function q N ( E )  is a central quantity in our approach. Its mean gradient is simply 
proportional to the density of states, but its typical gradient depends on the nature of 
eigenstates as outlined in the preceding section. The connection, in detail, is as follows. 

From the total derivative, d/daN, of equation (3.6) one finds 

[ w N ( E ) / a E I I E = E I  = - (dEl/daN)-l. (3.7) 
The derivative a qN/aE satisfies a recursion relation obtained by differentiating equation 
(3.4), i.e. 

with the initial condition d q l / d E  = 1. Because, at fixed energy, successive q,, are 
uncorrelated, the values of ag(8, qn-l)/8 qn-l at each step of the recursion relation are 
independently distributed. Iterating equation (3.8) and using the relationship between 
ag(f3, vn-l) /dqn-l  and ratios of fluxes (equation (3.5)), one finds 

(3.9) 

It is reasonable to choose Iz(an)12 = 1 for a normalised eigenstate (although nor- 
malisation of the probability density itself, rather than the fluxes, would require details 
of group velocities that have not been specified in the model). With this choice, the 
sensitivity of an energy level to a perturbation of a given link phase is proportional 
to the flux carried on that link in the associated eigenstate: -dE,/daN = /z(aN)12, as 
anticipated. 

The discussion so far has been for I ) , ~ ( E ) ,  as a function of energy, in one particular 
realisation of the random system. It is actually much easier to consider the probability 
distribution of dqN(E) /dE at fixed energy, over the ensemble of realisations. Since aN 
is uniformly distributed, the probability density for there to be an eigenstate at the 
chosen energy is simply proportional to aw,(E)/aE. Because of this, it is natural to 
define two types of average in the ensemble. The average of a quantity X ,  at fixed energy, 
over all values of {an}, irrespective of whether the system has an eigenstate at this energy, 
is denoted by (a,. An average restricted to those systems in the ensemble that have 
eigenstates at the energy considered is indicated by (a, without subscript zero. The two 
averages are related by 

(3.10) 

As an application of this relationship, one can connect the probability distribution of 
dqN(E) /dE  to the distribution of eigenstate fluxes through the end link of the chain. If 
p(x) is the probability density forx = awN(E)/aE over all systems in the ensemble, and 
p ( y )  is the probability density for y = I z ( u ~ ) ~ ~  over eigenstates, then one finds from 
P ( Y )  = (S(Y  - [~wN(E) /aEI- 'N  that 

P(Y> = Y - 3 P ( l / Y / / =  dx X P ( X > .  (3.11) 

We conclude this section by showing from the recursion relation for aqn(E) /dE 
(equation (3.8)) that states are indeed localised in the one-dimensional network. Note 
first, from the definition of g(8, q)  (equation (3.3)), that 

0 
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e-2e sin2(V/2)]-' dV = 1 

and 

Then, by averaging the recursion relation, 

( w h v m ) O  = N 

2679 

(3.12) 

(3.13) 

which simply demonstrates that the mean density of states in energy is proportional to 
system size. The second moment is more revealing: for large N 

c + l  
((%)2)o = N(lz(ahi)I-*> - - C N  + O ( N )  ( c  - 1)* 

(3.14) 

with c = cosh(28). The fact that ( ( ~ V , / C ~ E ) ~ ) ,  grows exponentially with N ,  while 
(8qN/dE) ,  grows only linearly, indicates that v N ( E )  has the step-like form shown in 
figure 5 .  Similarly, the exponential growth of ( lz(aN)l-2) suggests that eigenstates are 
localised: for uniformly extended states, ( Iz(aN) 

A more complete approach is to consider the probability distribution p ( x )  for x = 
aVN/d E. Since x 3 1, one expects either that a limiting distribution exists for large N o r  
that typical values of x diverge with N .  If a limiting distribution does exist, then. because 
( x ) ~  diverges with N ,  p ( x )  cannot fall more rapidly than x-*  as x+  =. In fact, it is easy 
to show by applying the inequality 

= N .  

(1 + x)' c 1 + x' 

( ( W N / d E ) Y ) O  [1 - f(Y)" - AY11 

forx 2 0 and 0 6 y 6 1, to the recursion relation (equation (3.8)), that 

(3.15) 

By direct calculation, 0 < f(y) < 1 for 0 < y < 1, and hence ((dVN/dE)YJO remains 
bounded as N +  CO. We conclude that a limiting distribution exists, which satisfies the 
integral equation (from equation (3.8)) 

p ( x )  = d s  1 dx'  P(s)p(x')G(sx'  + 1 - x )  (3.16) 

where P(s) is the probability distribution fors = dg(B, V)/d V .  The asymptotic behaviour 
of p ( x )  at large x can be found by substituting the trial form p ( x )  - Ax-&: consistency 
requires a = 2. 

The power law, with a = 2, can be understood simply as follows. Suppose eigenstate 
amplitudes simply decay exponentially from localisation centres that are distributed 
uniformly along the chain length. Then 

Iz(ahi)12 = B e-"/t (3.17) 

where n takes the values 0 ,1 ,  . . . , ( N  - l ) ,  each with probability 1/N, and B and 5 are 
constants. This defines p ( y ) ,  the probability distribution for y = 1z(aN)I2, as a series of 
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Figure 7. Schematic illustration of the process of constructing a Cayley tree from three trees 
defined on half-planes. 

unevenly spaced delta functions. More realistically, we should expect p ( y )  to be a 
smoothed version of that function: p ( y )  = E/Ny for B e-”E < y < B ,  p(y)  = 0 other- 
wise. From this we deduce (via equation (3.11)) that p ( x )  - x T 2  asx+  W .  In summary, 
the probability distribution for d v N / a E  is just what one expects from exponentially 
localised states. 

4. The Cayley tree 

In this section we apply the approach described above to study the network model 
defined on a Cayley tree with three nearest neighbours to each loop (figure 1). We 
examine the probability distribution for eigenstate amplitudes at the centre of the system 
and identify four regimes of behaviour as the scattering parameter 8 is varied. These 
have, in order decreasing 8: (i) t~ > 8 > el, exponentially localised states with a suf- 
ficiently short localisation length that they are normalisable; (ii) > 8 > 02 ,  expo- 
nentially localised states that are not normalisable, because the localisation length is too 
large (decay of the eigenfunction with distance is beaten by the exponential growth in 
site number with distance from an origin on the Cayley tree); (iii) O2 > 8 > €I3, extended 
states with broad (power-law) amplitude distributions; and (iv) O 3  > 0 > 0, extended 
states with narrow amplitude distributions. We interpret the amplitude fluctuations in 
regime (iii) as arising because the correlation length is larger than the exponential growth 
rate in site number with distance. Finally, we study transmission of flux by a Cayley tree 
with open boundary conditions and show that regime (i) is insulating, but that the other 
regimes are conducting. 

It is most convenient, first, to construct recursively three Cayley trees on half-planes, 
and then to join them as indicated in figure 7. One stage of the recursive procedure is 
illustrated in figure 8. In analogy with the treatment described for the one-dimensional 
network, we define 

v n - 1  = arg[z(a ,>I  - arg[z(a2)1 

v n  = arg[z(c,)l - arg[z(cdl. 

v A-I = arg[z(b , > I  - arg[z(b2)l 

and 

The counterparts to equations (3.4) and (3.5) are 

vtl = a, + E v n - 1 )  +de, vA-1) (4.1) 
where an is a random phase associated with the elementary loop of figure 8, and 
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Figure 8. One stage of the recursive procedure 
represented by equation (4.1). 

lz(a1)/z(c1>l2 = ad87 v n - l ) / a v n - l .  (4.2) 
Eigenenergies are determined by the condition that phases match at the centre of the 
tree. With, in obvious notation, 

y = E + g ( 8 7 v N - 1 ) + g ( e , W ~ - l ) + g ( e 7 W ~ - l )  (4.3) 
we require 

Y ( E )  + aN = 2nl 

(which is equation (2 .6) ) .  

to a local perturbation (a change in the value of aN) and calculate 
As for the one-dimensional model, we shall examine the sensitivity of energy levels 

[dY(E) /aE]- '  = - d E l / d a N  = lzNI2 (4.4) 
where 1 . ~ ~ 1 ~  is the flux carried by the central loop of the tree. We therefore consider the 
recursion relation 

with the initial condition dVl /6E  = 1. Again, progress is possible because vn and qA 
are uncorrelated, both mutually and for successive values of n. 

The average phase gradient (dY/aE), is proportional to the density of states in 
energy, which is independent of the scattering parameter 8, linear in system size and 
grows exponentially with the iteration index N :  

(aY/aE), = 3 x 2N-1 - 2. (4 - 6) 
Higher moments of d Y / a E  are also easy to calculate but, because of the broad dis- 
tributions involved, one learns much more by examining pn(x),  the probability dis- 
tribution for x = avn /dE ,  as a whole. It has four kinds of behaviour with physical 
interpretations as outlined above. The range of possibilities is reasonably obvious. Since 
x 1, either a limiting distribution exists (regime (i)), or typical values of x increase 
with n. If typical values of x do increase with n ,  one expects, from the multiplicative 
structure of equation ( 4 3 ,  that x - O(a'). The growth of the mean (equation (4.6)) 
indicates that a S 2. Regime (ii) corresponds to 1 < a < 2. If a = 2, one expects the 
scaled variable r = 2-"x to have a limiting distribution n(r). This may either have a 
power-law tail for larger r ,  n(r) - rWCy as r -  a (regime (iii)), or fall more rapidly than 
any power (regime (iv)). 

> 8 > el. Then, by an analysis parallel to 
that preceding equation (3.15), one can show that ( ( ~ I ) , / ~ E ) Y ) ,  is bounded from above 
as n - a, provided 2f(y) < 1. The last inequality is satisfied for y = 4 if 8 > el, where 

We begin with the largest values of 8: 
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I 6 small 

1 0 
Y 

Figure 9. The function f(y) ,  defined in equation 
(3.15). It can be shown analytically thatf(4 + y )  = 
f(4 - y )  and that d2f/dyZ 3 0. 

Figure 10. The Cayley tree with open boundary 
conditions at the surface. 

is determined below. Hence a limiting distribution p(x) exists, satisfying a non-linear 
integral equation analogous to equation (3.16), i.e. 

where P(s)  is the probability distribution of s = ag(8, q ) / d q .  

a is determined by 
Inserting the trial asymptotic form p(x) - Ax-", for largex, one finds that the power 

f(a - 1) = 4 (4.7) 
wheref(y) is defined in equation (3.15), with a real. The solution to equation (4.7) is 
best understood graphically; the functionf(y) is illustrated in figure 9. For 8 = CO, a = 
2; a decreases with 8; for 8 = el, a = 4; and for 8 < el, there is no physical solution. 
By numerical calculation off(y) we obtain 

We can relate this behaviour to the nature of eigenstates, as we did for the one- 
dimensional model. Suppose that all eigenstates have probability densities that simply 
decay as an exponential, Be-n't, with distance n from some centre. These states are 
normalisable provided the localisation length is sufficiently short: provided 2e-'/5 < 1. 
Assume that the centres of these states are uniformly distributed on the Cayley tree. 
Then y = 1 . ~ ~ 1 ~  takes the discrete values y = B ,-"/E, n = 0,1 ,  . . . , N - 1, with prob- 
abilities 2n-N. A smoothed version of this probability distribution is p(y)  2-Ny-p for 
B > y > B e-(N-l)/S, p(y) = 0 otherwise, with p = 5 ln(2) + 1. Using the connection 
between p(y) and the probability density p(x), for the phase gradient x = aqn/dE,  we 
find p(x)  - x-" with a = 2 - 5 In 2. In the strong scattering limit, 8 = CO, we expect 5 = 
0 and hence a = 2, in agreement with the solution to equation (4.7). Furthermore, we 
expect 5 to increase as the scattering parameter 8 decreases, so that adecreases with 8, as 
calculated from equation (4.7). However, the simple approximation that all eigenstates 

= 1.88. 
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have identical envelopes fails near the mobility edge 8 = 01, where states are no longer 
normalisable. There, the effect of fluctuations, included in equation (4.7), results in the 
value a = $, and not a = 1 as we might have anticipated from setting 2e-''E = 1. 

The second regime of behaviour, O1 < 8 < 02, corresponds to eigenstates that are 
exponentially localised, but not normalisable. In this case d V,/aE has no limiting 
distribution for large n ;  instead, typical values increase exponentially with n. The rate 
of exponential growth can be found by studying a modified version of equation (4.5). 
Consider t,, which satisfies 

with t l  = 1. Comparing equations (4.8) and ( 4 4 ,  one sees that t, > b-"aV,,/aE. (It is 
easier to examine the distribution of t, than that of b-"aV,/aE directly, because t, is 
bounded away from zero.) If aV,/dE - O(a"), then t, will have a limiting distribution 
as n + =, so long as b > a. This distribution can be discussed using the same techniques 
as were applied to equation (4.5); it has the asymptotic form At-" for large t ,  with a 
determined by 

We are interested in the smallest value of b for which this equation has a real solution, 
a > 1, and take this value of b to be the mean rate of growth a of aV,/aE. Imagine a 
graphical solution to equation (4.9). Referring to figure 9, a increases with decreasing 
scattering 8 from a = 1 at 8 = to a = 2 at 8 = 02.  We find O 2  = ln(V'2 + 1) = 0.881. 

Such behaviour can also be related to the form of eigenstates. Typical values of aw/ 
aE determine the largest values of /zNI2, which arise from eigenstates having their 
localisation centre near the middle of the Cayley tree. Assuming non-normalisable, 
exponential decay, one calculates lzN12 - O(exp[N(l/E - In 2)]) for these states. Thus 
we identify, using equation (4.4), a = 2e-"E. The calculated variation of a with the 
scattering parameter indicates that the localisation length 6 increases with decreasing 8, 
and diverges at 8 = 02.  

The third regime of behaviour, e2 > 8 > e3, corresponds to eigenstates that typically 
have a probability density at the centre of the Cayley tree of order (system size)-', but 
with a distribution of values that has a power-law tail. We interpret the power-law 
distribution as indicating that the correlation length of these extended eigenstates is 
larger than the growth rate of site number with distance, so that amplitude fluctuations 
are, in a sense, non-normalisable. Consider the recursion relation for r = 2-"(aq,/aE), 
which at large n is asymptotically 

f(a - 1) = 46"-'. (4.9) 

(4.10) 

In this regime r has a limiting distribution n ( r ) ,  with asymptotic behaviour n(r) - Ar-" 
for large r .  Following the same methods as before, a is determined from 

(4.11) 
A graphical analysis, based on figure 9, indicates that a increases with decreasing 
scattering, from a = 2 at 8 = O 2  to a = CC at 8 = 03 .  We find 83 = 1 In 2 = 0.347. These 
conclusions can be checked by explicit calculation of integer moments of r ,  obtained by 
averaging powers of the recursion relation (equation (4.10)). 

Finally, in the fourth regime, O3 > 8 > 0, r has a limiting distribution n(r) that falls 
more rapidly to zero with increasing r than any negative power of r .  One can confirm 
directly that all positive integer moments of r are finite. 

f (a  - 1) = 2a-2 .  
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The discussion so far has concentrated on the distribution of eigenstate amplitudes 
at a single point in the system. It is in fact the main weakness of our approach that we 
are not able to calculate two-point correlation functions, such as (lz(aJz(ak)I2).  It is, 
however, possible to derive a recursion relation for the reflection coefficient from a 
Cayley tree with open boundary conditions at the surface sites (figure 10). We find that 
the reflection coefficient iterates to unity if the eigenstates are normalisable 
(a > 8 > el), but otherwise (8 ,  > 8 > 0) has a non-trivial limiting distribution. The 
arguments, which are similar to those of Shapiro (1983), are as follows. 

The reflection coefficient is defined by, referring to figure 8, 

(4.12) 

This can be written, using equation (3.la), as 

Rn = F(Rn-1, Vn-lIF(RA-1, WA-1) (4.13) 

where Rn-l = l ~ ( a , ) / z ( a ~ ) 1 ~ ,  RA-, = l~(b~>/z(b~)1~, Vn-l  and VA-, are independently 
and uniformly distributed phases and 

tanh2 8 + 2R112 tanh 8 cos + R 
F(R' = 1 + 2R112 tanh 8 cos + R tanh2 8 '  (4.14) 

If no flux is incident at the surface of the tree, the initial condition for the recursion 
relation (equation (4.13)) is R1 = 0. To find whether the reflection coefficient iterates 
to unity, we only need to examine equation (4.13) for 1 - R = E Q 1. Linearising about 
E = 0 and noting that [dF(R, V)/dR]I,=, can be expressed in terms of the function 
g(8, V I ,  we find 

(4.15) 

From our study of equation (4.5), we know that typical values of E ,  iterate to zero (i.e. 
perfect reflection) if 8 > e,, while for 8 ,  > 8, typical values grow exponentially with n 
and a linearised equation is no longer adequate. Thus the system is insulating if 8 > 
and has a finite conductance if > 8. 

5. Discussion 

We conclude with a brief summary of our results and a qualitative discussion of the form 
of eigenfunctions on the Cayley tree. 

We have studied a model for wave propagation on a disordered Cayley tree that is, 
in a useful sense, irreducibly simple. We have shown with relatively straightforward 
techniques that there are four regimes of behaviour as a scattering parameter in the 
model isvaried. Eigenstates are exponentially localised at strong scattering and extended 
at weak scattering. In addition, there are important distinctions in behaviour according 
to whether the localisation length, or correlation length in the extended phase, is larger 
than the exponential growth rate of site number with distance from an origin on the 
Cayley tree. Our results supplement the more technical approaches of Kunz and Sou- 
illard (1983), Efetov (l985,1987a, b) and Zirnbauer (1986). The present methods have 
the weakness that conventional correlation functions of eigenstate amplitudes at two 
separate points are not accessible; their strengths are simplicity and the fact that they 
treat probability distributions as a whole, rather than simply averages. 
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The main feature of our results that is new, at least in emphasis, is the significance 
of distinctions other than the one (relevant near 8 = 8,) between square-integrable 
and non-normalisable eigenstates. The correlation functions calculated by Kunz and 
Souillard (1983) and Efetov (1987a, b) decay exponentially with separation at all 
energies, and those authors concentrate on whether correlation functions summed over 
sites at all separations are finite. To explain better the relationship between our results 
and theirs, we finish by describing a way of picturing typical eigenfunctions as a whole. 

The process of constructing an eigenstate, as discussed in the previous section, 
involves two stages. First, at an arbitrarily chosen energy, amplitudes and phases are 
matched at all points on the network except (possibly) one. Secondly, the probability 
density for the chosen energy actually to be an eigenenergy (in the ensemble of values 
for aN; equation (2.6)) is computed to be proportional to /zNl-2 (where 1 . ~ ~ 1 ~  is the flux 
flowing on the link with which the phase aN is associated). Thus, at the first stage, 
an ensemble of possible eigenfunctions is generated, and at the second stage actual 
eigenfunctions are selected with the correct probability from this ensemble. 

The eigenstates are most easilycaricaturedin the weak scattering regime, O3 > 8 > 0, 
when fluctuations in lzNI2 are small and all functions constructed in the first stage have 
similar probabilities actually to be eigenstates. A typical function generated by this first 
stage is simple to describe. Consider fluxes 1z(* flowing on successive links that form a 
branch of the Cayley tree leading from the centre to the surface. Let /zNI2 be the flux on 
a central link, and /zN_, l2  the flux on a link n steps towards the surface. From equation 
(3.5) 

(5.1) IZN-n 12 = h1hz * . . h, l Z N l  2 

where the h, represent factors ag(8, V ) / I ~ I )  at the nodes traversed by the path joining 
the two links. At an arbitrary energy (that is, neglecting the weight determined by 1zNI2), 
each hi is statistically independent. Thus, if we imagine 1oglzN-,l as a function of n ,  we 
obtain a random walk, the increment in the ordinate at the nth step being log h,. At 
largescaleswe know from thecentrallimit theoremthat [logIzN-,l - loglzN/] is Gaussian 
distributedwithmeann (log ho)andvariance n [((log h)2)o  - (log h);]. Since(1og h) ,  < 0 
for 8 > 0, this means that (for 63 > 8 > 0, when the weight involving 1 . ~ ~ 1 ~  does not play 
a crucial role) eigenstate amplitudes on a typical branch decay exponentially with 
distance from the centre of the Cayley tree. 

It is this exponential decay that is captured by the correlation functions that Kunz 
and Souillard (1983) and Efetov (1987a, b) study. The story cannot end here: if eigenstate 
amplitudes decayed exponentially with distance from the centre of the Cayley tree along 
all branches, the flux 1zNI2 would be O(1). In fact, we know from explicit calculation 
that (for O3 > 8 > 0) 1 . ~ ~ 1 ~  scales inversely with the system size. We conclude that in 
representative eigenstates there must also be atypical branches of the tree along which 
the amplitude does not decay. This can happen because of the exponential growth of 
site number with distance, which means that the tails of the approximately log-normal 
distribution for I z ~ - ~ ~ ~  are important. In summary, this qualitative picture of eigenstates 
in the extended phase reconciles the exponential decay found by previous authors with 
our results for eigenstate amplitude distributions. 

It is more difficult to obtain much insight from this approach for larger values of the 
scattering parameter, t~ > 6 > 03, but the outline isclear. Thecentralpoint is that typical 
functions in the ensemble generated by the first stage, as described above (equation 
(5 .  1)), are very different from typical eigenfunctions, as described following equation 
(4.7). We can understand how this comes about as follows. In this range for 8, values of 
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/zI2 fluctuate strongly and an arbitrarily chosen energy is unlikely to be an eigenenergy. 
As a result, the values of successive h, in equation (5.1) are highly correlated at eigenener- 
gies. By way of illustration, consider the insulating phase, t~ > 8 > el. Then, typical 
eigenstates decay exponentially from a localisation centre. Different localisation centres 
must be uniformly distributed over the Cayley tree, since the local. disorder-averaged 
density of states is independent of position. The selection of such eigenstates from the 
ensemble of functions generated via equation (5.1) is due to the weighting associated 
with the probability ( ~ l z ~ l - ~ )  for there to be an eigenstate at the energy considered. 
Most functions in the ensemble have a large value for 1 . ~ ~ 1 ~  and hence a small probability 
actually to be eigenstates; a small fraction of functions in the ensemble have expo- 
nentially small values for IzNl2, and it is just these that are likely to be eigenstates. Our 
study of the recursion relation (equation (4.5)) provides a formal treatment of this 
selection process. 
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